Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter.
نویسندگان
چکیده
The atrioventricular (AV) node is a recurrent source of potentially life-threatening arrhythmias. Nevertheless, limited data are available on its developmental control or molecular phenotype. We used a novel AV nodal myocardium-specific reporter mouse to gain insight into the gene programs determining the formation and phenotype of the developing AV node. In this reporter, green fluorescent protein (GFP) expression was driven by a 160-kbp bacterial artificial chromosome with Tbx3 and flanking sequences. GFP was selectively active in the AV canal of embryos and AV node of adults, whereas the Tbx3-positive AV bundle and sinus node were devoid of GFP, demonstrating that distinct regulatory sequences and pathways control expression in the components of the conduction system. Fluorescent AV nodal and complementary Nppa-positive chamber myocardial cell populations of embryonic day 10.5 embryos and of embryonic day 17.5 fetuses were purified using fluorescence-activated cell sorting, and their expression profiles were assessed by genome-wide microarray analysis, providing valuable information concerning their molecular identities. We constructed a comprehensive list of sodium, calcium, and potassium channel genes specific for developing nodal or chamber myocardium. Furthermore, the data revealed that the AV node and the chamber (working) myocardium phenotypes diverge during development but that the functional gene classes characterizing both subtypes are maintained. One of the repertoires identified in the AV node-specific gene profiles consists of multiple neurotrophic factors and semaphorins, not yet appreciated to play a role in nodal development, revealing shared characteristics between nodal and nervous system development.
منابع مشابه
The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart.
OBJECTIVE The molecular mechanisms that regulate the formation of the conduction system are poorly understood. We studied the developmental expression pattern and functional aspects of the T-box transcription factor Tbx3, a novel marker for the murine central conduction system (CCS). METHODS The patterns of expression of Tbx3, and of Cx40, Cx43, and Nppa, which are markers for atrial and vent...
متن کاملTranscription factor Tbx3 is required for the specification of the atrioventricular conduction system.
The cardiac conduction system consists of distinctive heart muscle cells that initiate and propagate the electric impulse required for coordinated contraction. The conduction system expresses the transcriptional repressor Tbx3, which is required for vertebrate development and controls the formation of the sinus node. In humans, mutations in Tbx3 cause ulnar-mammary syndrome. Here, we investigat...
متن کاملHistological study of the atrioventricular node and bundle in the heart of ovine fetus
This study was conducted on the atrioventricular node (AVN) and atrioventricular bundle (AVB) of fivefour-month-old ovine fetuses. The histological structure of these components was studied by routinehistological techniques and use of specific staining methods. The AVN was caudally located adjacent to theroot of the aorta. It was almost spherical in shape and consisted of twisty cells. The node...
متن کاملProtective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node of rabbit
Introduction: Recent studies have shown acute cardioprotective effects of cyclosporine. The aim of the present study was to determine the protective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node (AV-node) of rabbit. Methods: This study was performed on isolated double-per...
متن کاملGATA-Binding Factor 6 Contributes to Atrioventricular Node Development and Function.
BACKGROUND Several transcription factors regulate cardiac conduction system (CCS) development and function but the role of each in specifying distinct CCS components remains unclear. GATA-binding factor 6 (GATA6) is a zinc-finger transcription factor that is critical for patterning the cardiovascular system. However, the role of GATA6 in the embryonic heart and CCS has never been shown. METHO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 105 1 شماره
صفحات -
تاریخ انتشار 2009